原文摘要
An AI tool that gets gold on the IMO is obviously immensely impressive. Does it mean math is “solved”? Is an AI-generated proof of the Riemann hypothesis clearly on the horizon? Obviously not.
Worth keeping timescales in mind here: IMO competitors spend an average of 1.5 hrs on each problem. High-quality math research, by contrast, takes month or years.
What are the obstructions to AI performing high-quality autonomous math research? I don’t claim to know for sure, but I think they include many of the same obstructions that prevent it from doing many jobs: Long context, long-term planning, consistency, unclear rewards, lack of training data, etc.
It’s possible that some or all of these will be solved soon (or have been solved) but I think it’s worth being cautious about over-indexing on recent (amazing) progress.
— Daniel Litt, Assistant Professor of mathematics, University of Toronto
<p>Tags: <a href="https://simonwillison.net/tags/mathematics">mathematics</a>, <a href="https://simonwillison.net/tags/llms">llms</a>, <a href="https://simonwillison.net/tags/ai">ai</a>, <a href="https://simonwillison.net/tags/generative-ai">generative-ai</a>, <a href="https://simonwillison.net/tags/daniel-litt">daniel-litt</a></p>
进一步信息揣测
- IMO解题与数学研究的本质差异:IMO问题平均耗时1.5小时/题,而高质量数学研究需要数月或数年,暗示AI短期竞赛表现与长期科研能力之间存在巨大鸿沟,行业内部可能低估了后者所需的持续性和复杂性。
- AI数学研究的核心瓶颈:
- 长上下文与长期规划:数学研究需要跨时间整合碎片化思路,当前AI的短期记忆和任务分解能力不足(如无法模拟人类“灵感-验证-迭代”的漫长周期)。
- 模糊奖励机制:数学突破的评估标准难以量化(如“创新性”),而IMO问题有明确得分点,AI在开放探索中易迷失方向。
- 训练数据稀缺性:前沿数学研究样本极少,且未公开(如arXiv预印本中的失败尝试),导致AI缺乏学习素材。
- 行业过度乐观的潜在陷阱:尽管AI在受限任务(如IMO)中表现惊艳,但学术界私下可能担忧媒体/资本将短期进展外推为“数学已解决”的误导性叙事,实际技术瓶颈(如一致性验证)仍未被突破。
- 未言明的技术局限:
- 证明严谨性:AI生成的证明可能含隐藏漏洞(类似AlphaGo的“不可解释落子”),数学界对机器证明的信任需严格验证流程,但目前缺乏自动化工具。
- 领域迁移成本:IMO问题高度结构化,而真实研究需跨领域知识融合(如数论+几何),当前AI的跨模态推理能力不足。
- 商业化与学术的张力:AI团队可能优先优化可展示的里程碑(如竞赛成绩),而非枯燥的基础研究工具,导致学术需求与工程落地脱节——这一矛盾罕被公开讨论。